A

Major Project

On

CREDIT CARD FRAUD DETECTION USING ADABOOSTAND MAJORITY VOTING

Submitted to

Jawaharlal Nehru Technological University, Hyderabad

In partial fulfillment of the requirements for the award of Degree

BACHELOR OF TECHNOLOGY in

COMPUTER SCIENCE & ENGINEERING

By

V. Phanindra Shivaji	(187R1A05P5)
R. Bindhu Madhavi	(197R5A0516)
G. Naga Lakshmi	(187R1A05K2)
C G Sri Chakradhar Kishan	(187R5A0511)

Under the esteemed Guidance of

G. Pavan Kumar

(Assistant Professor)

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING CMR TECHNICAL CAMPUS

UGC AUTONOMOUS

(Accredited byNAAC,NBA,Permanently Affiliated to JNTUH, Approved by AICTE, New Delhi) Recognized Under Section 2(f)&12(B) of the UGC Act . 1956,Kandlakoya(V),

Medchal Road, Hyderabad-501401.

2018-2022

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

CERTIFICATE

This is to certify that the project entitled "CREDIT CARD FRAUD DETECTION USING ADABOOST AND MAJORITY VOTING" being submitted by V. PHANINDRA SHIVAJI (187R1A05P5), R. BINDHU MADHAVI (197R5A0516), G. NAGA LAKSHMI (187R1A05K2), C G SRI CHAKRADHAR KISHAN (187R5A0511) in partial fulfillment of the requirements for the award of the degree of B. Tech in Computer Science and Engineering of the Jawaharlal Nehru Technological University Hyderabad, is a record of bonafide work carries out by him/her under our guidance and supervision during the year 2021-2022.

The results embodied in this have not been submitted to any other University or Institute for the award of any degree or diploma.

G. Pavan Kumar Assistant Professor INTERNAL GUIDE Dr. A. Raji Reddy DIRECTOR

Dr. K. Srujan Raju HOD EXTERNAL EXAMINER

Submitted on viva voice Examination held on_____

ACKNOWLEDGEMENT

A part from the efforts of us, the success of any project depends largely on the encouragement and guidelines of many others. We take this opportunity to express our gratitude to the people who have been instrumental in the successful completion of this project.

We take this opportunity to express my profound gratitude and deep regard to my guide

G. Pavan Kumar, Assnt. Professor for his exemplary guidance, monitoring and constant encouragement throughout the project work. The blessing, help and guidance given by him shall carry us a long way in the journey of life on which we are about to embark.

We also take this opportunity to express a deep sense of gratitude to Project Review Committee (PRC) Coordinators: Mr. A. Uday Kiran, Mr. J. Narasimha Rao, Dr. T. S. Mastan Rao, Mrs. G. Latha, Mr. A. Kiran Kumar for their cordial support, valuable information and guidance, which helped us in completing this task through various stages.

We are also thankful to **Dr. K. Srujan Raju**, Head of the Department of Computer Science and Engineering for providing excellent infrastructure and a nice atmosphere for completing this project successfully.

We are obliged to our Director **Dr. A. Raji Reddy** for being cooperative throughout the courseof this project. We would like to express our sincere gratitude to our chairman Sri. **Ch. Gopal Reddy** for his encouragement throughout the course of this project.

The guidance and support received from all the members of **CMR TECHNICAL CAMPUS** who contributed for the completion of the project, was vital for the success of the project. We are grateful for their constant support and help.We are grateful for their constant support and help.

Finally, we would like to take this opportunity to thank our family for their constant encouragement, without which this assignment would not be possible. We sincerely acknowledge and thank all those who gave support directly and indirectly in completion of this project.

> V.PHANINDRA SHIVAJI (187R1A05P5) R. BINDHU MADHAVI (197R5A0516) G.NAGA LAKSHMI (187R1A05K2) SRI CHAKRADHAR KISHAN (187R5A0511)

ABSTRACT

In the financial services industry, credit card fraud is a big issue. Credit card fraud costs billions of rupees every year. Due to confidentiality concerns, there are few research studies on evaluating real-world credit card data. Machine learning techniques are employed to detect credit card fraud in this article. Standard models are employed first, and then After that, AdaBoost-based hybrid algorithms and majority voting are utilised. The model's performance is evaluated using publicly available credit card data. A real-world credit card data set from a financial institution is then used to analyse the data. In addition, noise is introduced into the data samples to test the algorithms robustness. The experimental findings show that the majority voting method detects credit card fraud situations with a high degree of accuracy.

LIST OF FIGURES

FIGURE NO.	FIGURE NAME	PAGE NO
Fig.3.1	Project Architecture	09
Fig.3.3	Use case diagram	11
Fig.3.4	Class diagram	12
Fig.3.5	Sequence diagram	13
Fig.3.6	Activity diagram	14
Fig 3.7	Data Flow diagram	15

LIST OF SCREENSHOTS

SCREENSHOT NOSCREENSHOT NAMEPAGENO

5.1 Screenshot	Home Page	24
5.2 Screenshot	Upload Dataset	25
5.3 Screenshot	Train & Test Model	26
5.4 Screenshot	Run RFA	27
5.5 Screenshot	Run AdaBoost	28
5.6 Screenshot	Detection Of Clean signatures	29
5.7 Screenshot	Detection of Fraud	30
5.8 Screenshot	Graph	31

TABLE	OF	CONTENTS
-------	----	----------

		i.
ABSTRACT		ii.
LIST OF FIGU	JRES	iii
LIST OF SC	REENSHOTS	1
1. INTRO	DUCTION	
1.1 PRO	JECT SCOPE	1
1.2 PRO	JECT PURPOSE	1
1.3 PRO	JECT FEATURES	1
2. SYSTE	M ANALYSIS	2
2.1 PRO	BLEM DEFINITION	3
2.2 EXIS	STING SYSTEM	4
2.2.1	LIMITATION OF EXISTING SYSTEM	4
2.3 PRO	POSED SYSTEM	5
2.3.1	ADVANTAGES OF PROPOSED SYSTEM	5
2.4 FEA	SIBILITY STUDY	5
2.4.1	ECONOMICAL FEASIBILITY	6
2.4.2	TECHNICAL FEASIBILITY	6
2.4.3	SOCIALFEASIBILITY	6
2.5 HAR	RDWARE & SOFTWARE REQUIREMENTS	7
2.5.1	HARDWARE REQUIREMENTS	7
2.5.2	SOFTWARE REQUIREMENTS	7
3. ARCHI	TECTURE	8
3.1 PRO	JECT ARCHITECTURE	9
3.2 MOI	DULES DESCRIPTION	10
3.2.1	CREDIT CARD	10
3.2.2	TRAIN & TEST	10

3.2.3 RUN RFA	10
3.2.3 DETECTION	10
3.2.4 CLEAN FRAUD	10
3.3 USECASE DIAGRAM	11
3.4 CLASS DIAGRAM	12
3.5 SEQUENCE DIAGRAM	13
3.6 ACTIVITY DIAGRAM	14
3.7 DATA FLOW DIAGRAM	15
4. IMPLEMENTATION	16
4.1 SAMPLE CODE	17
5. RESULTS	23
6.TESTING	32
6.1 INTRODUCTION TO TESTING	33
6.2 TYPES OF TESTING	33
6.2.1 SYSTEM TESTING	33
6.2.2 UNIT TESTING	34
6.2.3 INTEGRATION TESTING	34
6.2.4 ACCEPTANCE TESTING	34
6.3 TEST CASES	35
7.CONCLUSION	36
7.1 CONCLUSION	37
7.2 FUTURE ENHANCEMENT	37
8.BIBLIOGRAPHY	38
8.1 REFERENCES	39
8.2 WEBSITES	40
8.3 GITHUB LINK	40

1.INTRODUCTION

1.INTRODUCTION

1.1 PROJECT SCOPE

The project titled as "Credit Card Fraud Detection Using Adaboost and Majority Voting" is a dynamic application.Using this application, We are able to detect fraud with a specific user's credit card. To use the application, the user must first launch it. After that, the user can check all transactions made with the specific account, along with all associated details, as well as recent fraud. The majority list of the fraud will be generated after the application has finished running.

1.2 PROJECT PURPOSE

The project's goal is to detect Credit Card Fraud by combining data from previous credit card transactions with data from those that turned out to be fraudulent. The model is then used to determine whether or not a new transaction is fraudulent.

1.3 PROJECT FEATURES

This project's features are built on the basis of sample fraudulent datasets. These are data items such as the customer account's age and value, as well as the credit card's origin. There are hundreds of features, each of which contributes to the likelihood of fraud to varied degrees.

2.SYSTEM ANALYSIS

2.SYSTEM ANALYSIS

SYSTEM ANALYSIS

System Analysis is the important phase in the system development process. The System is studied to the minute details and analyzed. The system analyst plays an important role of an interrogator and dwells deep into the working of the present system. In analysis, a detailed study of these operations performed by the system and their relationships within and outside the system is done. A key question considered here is, "what must be done to solve the problem?" The system is viewed as a whole and the inputs to the system are identified. Once analysis is completed the analyst has a firm understanding of what is to be done.

2.1 PROBLEM DEFINITION

Various fraudulent activity detection approaches have been implemented in credit card transactions, and strategies to construct models based on artificial intelligence, data mining, fuzzy logic, and machine learning have been retained in researcher thoughts. The identification of credit card fraud is a challenging but common problem to handle. Machine learning was used to build the credit card fraud detection in our suggested system. Machine learning techniques are becoming more advanced. Machine learning has been highlighted as a useful tool for detecting fraud. During online transaction operations, a great amount of data is sent, resulting in a binary result. Machine learning is used to detect credit card fraud by employing classification and regression algorithms. To classify fraudulent card transactions, we use supervised learning algorithms such as the Random forest technique. The Random Forest algorithm is a more advanced variant of the Decision Tree algorithm. Random forest outperforms the other machine learning algorithms in terms of efficiency and accuracy. By selecting only a subsample of the feature space at each split, random forest seeks to alleviate the previously mentioned correlation issue. Essentially, it seeks to de-correlate and prune the trees by establishing a node split stopping criteria, which I will go over in more depth later.

2.2 EXISTING SYSTEM

A study of a case study involving credit card fraud detection in which data normalisation is applied before Cluster Analysis and results obtained from the use of Cluster Analysis and Artificial Neural Networks on fraud detection has shown that neuronal inputs can be minimised by clustering attributes in the existing system. Using normalised data withdata that has been MLP trained can also yield good results. Unsupervised learning was used in this study. The purpose of this article was to develop new approaches for detecting fraudand to improve the accuracy of the results. The data set for this article is based on real-worldtransactional data from a large European corporation, with personal information maintained private.using data parameter value. An algorithm's accuracy is estimated to be around 50%. The purpose of this paper was to develop an algorithm and lower the cost measure. The outcome was a 23 percent increase.

2.2.1 LIMITATIONS OF EXISTING SYSTEM

- Low Accuracy
- A cost sensitive method
- Low Efficiency

2.3 PROPOSED SYSTEM

In proposed System, We use the random forest technique and Adaboost technique to classify the credit card dataset in the suggested system. Random Forest is a classification and regression algorithm. Random forest training is incredibly quick, even for big data sets with numerous characteristics and data instances because each tree is trained independently of the others. The binary classification's goal class is 'class,' which has a value of 1 for a positive case (fraud) and 0 for a negative instance (not fraud). To create hybrid models, the AdaBoost and majority voting methods are used. The evaluation of a range of machine learning models with a real-world credit card data set for fraud detection is the project's main contribution.

2.3.1 ADVANTAGES OF THE PROPOSED SYSTEM

- Easy to Understand and Implement.
- Require Low Computational Power.
- Provide Optimal Result.

2.4 FEASIBILITY STUDY

Preliminary investigation examine project feasibility, the likelihood the system willbe useful to the organization. The main objective of the feasibility study is to test the Technical, Social and Economical feasibility for adding new modules and debugging old running system. All system is feasible if they are unlimited resources and infinite time.Threekey considerations involved in the feasibility analysis are

- Economical Feasibility
- Technical Feasibility
- Social Feasibility

2.4.1 ECONOMICAL FEASIBILITY

This research is being carried out to determine the system's economic impact on the organisation. The amount of money the corporation has to invest in the system's research and development is limited. It is necessary to justify the spending. As a result, the produced system came in under budget, which was made possible by the fact that the majority of the technologies used were freely available. The customized products were only ones needed to be acquired.

2.4.2 TECHNICAL FEASIBILITY

This research is being carried out to determine the system's technological feasibility, or technical requirements. Any system that is created should not place a large burden on the available technical resources. As a result, there will be a lot of demand on the available technical resources. As a result, the client will be subjected to severe demands. Because very minor or no changes are necessary to implement this system, the designed system must have a low requirement.

2.4.3 SOCIAL FEASIBILITY

The purpose of the study is to determine the user's level of acceptance of the system. This covers the process of teaching the user how to effectively use the technology. The user should not be afraid of the system, but rather accept it as a need. The methods used to educate and familiarise the user with the system are totally responsible for the level of acceptance by the users. His self-esteem must be boosted so that he can offer constructive criticism, which is encouraged because he is the system's final user.

2.5 HARDWARE & SOFTWARE REQUIREMENTS

2.5.1 HARDWARE REQUIREMENTS:

Hardware interfaces specifies the logical characteristics of each interface between the software product and the hardware components of the system. The following are some hardware requirements.

Processor	:	intel core i3.
RAM	:	minimum 4GB.
Hard Disk	:	minimum 250GB.

2.5.2 SOFTWARE REQUIREMENTS:

Software Requirements specifies the logical characteristics of each interface and software components of the system. The following are some software requirements.

Operating System : Windows 7 & above. Coding Language : Python 3.7. Tool : Anaconda 3.7.

3.ARCHITECTURE

3. ARCHITECTURE

3.1 PROJECT ARCHITECTURE

Fig.3.1 Project Architecture of Credit Card Fraud Detection.

3.2 MODULES DESCRIPTION

Modules

- Upload Credit Card Dataset
- Generate Train & Test Model
- Run Random Forest Algorithm
- Detect Fraud From Test Data
- Clean & Fraud Transaction Detection Graph

Upload Credit Card Dataset

In this module user upload Credit Card Dataset.

Generate Train & Test Model

In this module user train & test model through dataset.

Run Random Forest Algorithm

In this module random forest algorithm classify dataset.

Detect Fraud From Test Data

In this module fraud is detected from dataset.

Clean & Fraud Transaction Detection Graph

In this module clean & Fraud Transaction detection graph is shown.

3.3 USE CASE DIAGRAM

In the use case diagram, is a type of behavioral diagram defined by and created from a Use-case analysisIts purpose is to present a graphical overview of the functionality provided by a system in terms of actors, their goals (represented as use cases), and any dependencies between those use cases. The main purpose of a use case diagram is to show what system functions are performed for which actor. Roles of the actors in the system can be depicted.

Fig.3.3 Use Case Diagram

3.4 CLASS DIAGRAM

Class Diagram is a collection of classes and objects.

Fig.3.4 Class Diagram

3.5 SEQUENCE DIAGRAM

The sequence diagram shows the sequence in which different tasks are being carried out by the actors.

3.6 ACTIVITY DIAGRAM

It describes the flow of activity states

Fig 3.6 Activity Diagram

3.7 DATA-FLOW DIAGRAM

Fig 3.7 Dataflow Diagram

4.IMPLEMENTATION

CMRTC

4.IMPLEMENTATION

4.1 SAMPLE CODE

```
from tkinter import messagebox
from tkinter import *
from tkinter import simpledialog
import tkinter
from tkinter import filedialog
import matplotlib.pyplot as plt
import numpy as np
from tkinter.filedialog import askopenfilename
import numpy as np
import pandas as pd
from sklearn import *
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
from sklearn.metrics import classification report
from sklearn.ensemble import RandomForestClassifier
      from sklearn.ensemble import AdaBoostClassifier
#from sklearn.tree import export_graphviz
#from IPython import display
```

```
main = tkinter.Tk()
main.title("Credit Card Fraud Detection") #designing main screen
main.geometry("1300x1200")
```

global filename global cls global X, Y, X_train, X_test, y_train, y_test global random_acc # all global variables names define in above lines global clean global attack global total def traintest(train): #method to generate test and train data from dataset

```
X = train.values[:, 0:29]

Y = train.values[:, 30]

print(X)

print(Y)

X_train, X_test, y_train, y_test = train_test_split(

X, Y, test_size = 0.3, random_state = 0)

return X, Y, X_train, X_test, y_train, y_test
```

def generateModel(): #method to read dataset values which contains all five features data global X, Y, X_train, X_test, y_train, y_test

train = pd.read_csv(filename)
X, Y, X_train, X_test, y_train, y_test = traintest(train)
text.insert(END, "Train & Test Model Generated\n\n")
text.insert(END, "Total Dataset Size : "+str(len(train))+"\n")
text.insert(END, "Split Training Size : "+str(len(X_train))+"\n")
text.insert(END, "Split Test Size : "+str(len(X_test))+"\n")

```
def upload(): #function to upload tweeter profile
  global filename
  filename = filedialog.askopenfilename(initialdir="dataset")
  text.delete('1.0', END)
  text.insert(END,filename+" loaded\n");
```

```
def prediction(X_test, cls): #prediction done here
  y_pred = cls.predict(X_test)
  for i in range(50):
    print("X=%s, Predicted=%s" % (X_test[i], y_pred[i]))
  return y_pred
```

```
# Function to calculate accuracy
def cal_accuracy(y_test, y_pred, details):
    accuracy = accuracy_score(y_test,y_pred)*100
    text.insert(END,details+"\n\n")
    text.insert(END,"Accuracy : "+str(accuracy)+"\n\n")
    return accuracy
```

```
def runRandomForest():
    headers =
["Time","V1","V2","V3","V4","V5","V6","V7","V8","V9","V10","V11","V12","V13","V14","
V15","V16","V17","V18","V19","V20","V21","V22","V23","V24","V25","V26","V27","V28"
,"Amount","Class"]
    global random_acc
    global cls
    global cls
    global X, Y, X_train, X_test, y_train, y_test
    cls =
RandomForestClassifier(n_estimators=50,max_depth=2,random_state=0,class_weight='balance
    d')
```

CMRTC

```
cls.fit(X train, y train)
  text.insert(END,"Prediction Results\n\n")
  prediction data = prediction(X test, cls)
  random_acc = cal_accuracy(y_test, prediction_data,'Random Forest Accuracy')
  #str_tree = export_graphviz(cls, out_file=None, feature_names=headers,filled=True,
special_characters=True, rotate=True, precision=0.6)
  #display.display(str_tree)
def runada():
  headers =
["Time", "V1", "V2", "V3", "V4", "V5", "V6", "V7", "V8", "V9", "V10", "V11", "V12", "V13", "V14", "
V15", "V16", "V17", "V18", "V19", "V20", "V21", "V22", "V23", "V24", "V25", "V26", "V27", "V28"
,"Amount","Class"]
  global random acc
  global cls
  global X, Y, X_train, X_test, y_train, y_test
  cls = AdaBoostClassifier(n estimators=100, random state=0)
  cls.fit(X_train, y_train)
  text.insert(END,"Prediction Results\n\n")
  prediction_data = prediction(X_test, cls)
  random acc = cal accuracy(y test, prediction data, 'Ada Boost')
def predicts():
  global clean
  global attack
  global total
  clean = 0;
  attack = 0;
  text.delete('1.0', END)
  filename = filedialog.askopenfilename(initialdir="dataset")
  test = pd.read csv(filename)
  test = test.values[:, 0:29]
  total = len(test)
  text.insert(END,filename+" test file loaded\n");
  y_pred = cls.predict(test)
  for i in range(len(test)):
     if str(y_pred[i]) == '1.0':
       attack = attack + 1
       text.insert(END, "X=%s, Predicted = %s" % (test[i], 'Contains Fraud Transaction
Signature')+"\n\n")
     else:
       clean = clean + 1
       text.insert(END, "X=%s, Predicted = %s" % (test[i], 'Transaction Contains Cleaned
Signatures')+"\n\n")
```

def graph(): height = [total,clean,attack] bars = ('Total Transactions','Normal Transaction','Fraud Transaction') y_pos = np.arange(len(bars)) plt.bar(y_pos, height) plt.xticks(y_pos, bars) plt.show()

```
font = ('times', 16, 'bold')
title = Label(main, text='Credit Card Fraud Detection Using Random Forest Tree Based
Classifier')
title.config(bg='greenyellow', fg='dodger blue')
title.config(font=font)
title.config(height=3, width=120)
title.place(x=0,y=5)
```

```
font1 = ('times', 12, 'bold')
text=Text(main,height=20,width=150)
scroll=Scrollbar(text)
text.configure(yscrollcommand=scroll.set)
text.place(x=50,y=120)
text.config(font=font1)
```

font1 = ('times', 14, 'bold')
uploadButton = Button(main, text="Upload Credit Card Dataset", command=upload)
uploadButton.place(x=50,y=550)
uploadButton.config(font=font1)

```
modelButton = Button(main, text="Generate Train & Test Model", command=generateModel)
modelButton.place(x=350,y=550)
modelButton.config(font=font1)
```

```
runrandomButton = Button(main, text="Run Random Forest Algorithm",
command=runRandomForest)
runrandomButton.place(x=650,y=550)
runrandomButton.config(font=font1)
```

```
runadaButton = Button(main, text="Run Ada Boost Algorithm", command=runada)
runadaButton.place(x=950,y=550)
runadaButton.config(font=font1)
```

```
predictButton = Button(main, text="Detect Fraud From Test Data", command=predicts)
predictButton.place(x=50,y=600)
predictButton.config(font=font1)
```

CMRTC

graphButton = Button(main, text="Clean & Fraud Transaction Detection Graph", command=graph) graphButton.place(x=350,y=600) graphButton.config(font=font1)

```
exitButton = Button(main, text="Exit", command=exit)
exitButton.place(x=770,y=600)
exitButton.config(font=font1)
```

```
main.config(bg='LightSkyBlue')
main.mainloop()
```

5.RESULTS

5. RESULTS

5.1 HOME PAGE

Home page looks like this.

				0
	Credit Card Fraud Defers	ion Using Mandom Invest Tree Da	and Charatter	
			1	
Upland Caville Cavil Dataset	Generale Train & Tool Media	Rus Ramion Forrsi Algorika	Ran Ada Boosi Algorithm	
Upland Credit Card Dataset	Generatic Train & Tool Model	Rus Raudon Forrel Algorithm	Ran Ada Bosoi Algorithm	
Upland Cradii Card Dalasei Delect Frand From Trai Dala	Generate Train & Teal Model Clean & Front Transaction Dete	Rus Raulon Forrsi Algoriku riku Graph Est	Ran Ada Boost Algorithm	
Uplied Credit Card Dataset Detect Frand From Text Data	Generate Train & Tool Medid Clean & Frand Transsellon Dele	Run Rambon Fooral Algorithm withon Graph Ext.	Ran Ada Bosoi Algorithm	
Upland Crash Card Dataset Detect Frand From Test Bala	Generale Train & Teal Model Clean & Frand Transaction Dele	Rus Ramion Forrsi Algorithm riton Graph Est	Ran Ada Boost Algorithm	
Upload Credit Card Dataset Detect Frand From Test Data	Generale Train & Tool Model Clean & Frand Transortion Dele	Rus Raudon Forrel Algorithm rition Graph Eul	Ran Ada Bosoi Algorithm	

Screenshot 5.1 Home Page

5.2 Upload Dataset

Click on the "upload Credit Card Dataset" button to upload the data.

Credit Card Fraud Detection Using Random Forest Algorithm Run Ada Boost Algorithm Detect Fraud Frau Test Data Clean & Frau Transacture Detection Graph Eait					- 0.
C:Uners/A. And Kanaan Dawiltelen Deckeep Project Code Updated Codel Cardifications involve laaded Upload Credit Card Dataset Cenerate Train & Test Model Ran Random Forest Algorithm Ran Ada Boost Algorithm Delevel Frand From Test Data Clean & Frand Transaction Delevelon Graph Eait		Credit Card Frond Detecti	ian Luing Random Forest Tree Ha	nort Classifler.	
Upload Credit Card Dofaser Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Delivet Frand From Test Data Clean & Frand Transaction Delivetion Graph Eat	Dillion / And Kaman DaoDrive Decker	eProject Cele Updated Coeff Cas	Watavoticeolitzani.cov lasided		
Upload Credit Card Dataset Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Detect Frand From Test Data Clean & Frand Transaction Detection Graph Eait					
Upload Credit Card Dataser Generate Train & Test Model Ran Random Forest Algorithm Ran Ada Boost Algorithm Delivet Frand From Test Data Clean & Frand Transaction Delivetion Graph East					
Upload Credit Card Dataser Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Delect Fraud Frau Test Data Clean & Frau Traussection Delection Graph East					
Upload Credit Card Dataser Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Delect Fraud Frau Test Data Clean & Fraud Transaction Detection Graph East					
Upload Credit Card Datasef Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Delect Fraud From Tost Data Clean & Fraud Transaction Detection Graph East					
Detect Frand From Test Data Clean & Frand Transaction Detection Graph Eait					
NO A CENTRE CONTRACTOR C	Upload Credit Card Dataser	Generate Train & Test Model	Run Random Forest Algorithm	Run Ada Boest Algorithm	
	Upload Credit Card Dataser Detect Fraud From Test Data	Generate Train & Test Model Clean & Frant Transaction Detec	Run Random Forest Algorithm etton Graph East	Run Adə Boost Algorithm	
	Upload Credit Card Dataser Detect Fraud From Tost Data	Generate Train & Test Model Clean & Frand Transaction Detec	Run Random Forest Algorithm clion Graph East	Run Ada Boost Algorithm	
	Upload Credit Card Dataser Detect Frand From Test Data	Generate Train & Test Model Clean & Fraud Transaction Deter	Run Random Forest Algorithm	Run Ada Boest Algorithm	

Screenshot 5.2 Upload Dataset

5.3 Train and Test Model

To Train and Test the dataset click on the "Generate train and test model". We can examine the total number of records in the dataset and then use how many records for training and testing in the application.

Gadrad Opinia :					
	Credit Card Frand Detect	ion Using Random Forest Tree Ba	ord Clautfler		
C. Userath, And Kanas OneDrine Desizo Train & Tear Model Generated	pProject Code Tpdated Updated Crodit Cor	islatasetsreditranilase kaded		-	
Dated Destance) Score - 284887 Spile Transing Score - 199364 Spile Trans Size - 285443					
Upload Credit Card Dataset	Generate Train & Test Model	Run Random Forest Algorithm	Rus Ade Boest Algorithm		
Detect Frond From Test Data	Clesa & Frand Transaction Dete	ction Graph Exit			

Screenshot 5.3 Train And Test Model

5.4 Run RFA

Click on "Run Random Forest Algorithm" button to apply RFA Classifier.

: UnersiA, Anil Kamar OneDrive Decks Irain & Test Model Generated	pProject Code Updated Updated Credit Care	kilataseticreditranil.cay loaded		
lotal Dotaont Sian : 284807 otal Training Size : 199364 pår Trent Sine : 85643 trediction Recently				
Ladon Freett Arminey				
accuracy : 99.78816286881312				
Upload Credit Card Dataset	Generate Train & Test Model	Run Raudom Forest Algorithm	Run Ada Boost Algorithm	
Upload Credit Card Dataset Detect Frank From Test Data	Generate Train & Test Model Clean & Frand Transaction Dete	Run Random Forest Algorithm	Run Ada Boost Algorithm	
Upload Credit Card Dataset Detect Frand From Test Data	Generate Train & Test Model Clean & Frand Transaction Deter	Run Random Forest Algorithm clion Graph Exit	Run Ada Boost Algorithm	
Upload Credit Card Dataset Detect Frank From Test Data	Generate Train & Test Model Clean & Frand Transaction Deter	Run Random Forest Algorithm clion Graph Exit	Run Ada Boost Algorithm	

Screenshot 5.4 Run RFA

5.5 Run Adaboost

Click on "Run Adaboost Algorithm" button to apply Adaboost Classifier.

Credit Cani Frand Detretion Using Random Forest True Based Cinsulier C: Users A. And Kanar On-Detrop Project Code Episted Updated Code Cardi Astronetered trant.cov kodel Tabé & Teet Mole Generate Total Detretion Bendy Production Result Radom Forest Assuraty Actuary: 90.986(20988)3122 Production Result Actuary: 90.986(20988)3122 Production Result Actuary: 90.986(20988)3122 Production Result Actuary: 90.986(20988)3122 Production Result Actuary: 90.986(20988)3125 Production Result Actuary: 90.986(20988)312 Production Result Actuary Actuary: 90.986(20988)31 Production Result Actuary Actuary: 90.986(20988)32 Production Result Actuary Actuary: 90.986(20988)32 Production Result Actuary	Credit C C: UnearA. Anil Kanner OneDrive Desktop/Project Code Optic Trata & Test Model Generated Total Dataset Size : 284807 Split Trataing Size : 190364 Split Test Size : 55433 Prediction Results Random Forest Accuracy Accuracy : 99.78816286881312 Prediction Results Ada Boort Accuracy : 99.98562960142857	end Frind Detrer	rtina Using Rau	dom Forest True B	arord Classifier	1	
C:Usern A. Anil Kanan On-Drive Denktop Project Code Updated Updated Codit Cardidatasettereditant.cov koded Tak & Test Model Generated Total Dataset Size : 190294 Split Test Size : 5943 Production Results Random Forest Accuracy Accuracy : 99. 92562569182052 Production Results Ada Boert Accuracy : 99. 92562569182057	C: Usern A. And Kamar OneDrive Desktop Project Code Updr Train & Text Model Generator Spit Training Size : 199364 Spit Training Size : 199364 Spit Training Size : 199364 Spit Text Societ Status Prediction Results Accuracy : 90.78816286881312 Frediction Results Ada Boost Accuracy : 99.93562960102057	ned Updaried Credit Car	ed datas et icreditaar	t, ray loaded			
Term Terms Sine : 1905ed Split Teen Sine : 1956ed Split Teer Sine : 1854a3 Production Results Accuracy : 90.788162369381232 Production Results Ada Basert Accuracy : 90.9556[2661142857 Uplinad Credit Carist Dataset Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Detect Frand From Test Data Chean & Frand Transaction Detection Graph Exit	Tota Dirition Sub : 20000 Split Training Size : 20000 Split Training Size : 20000 Prediction Results Accuracy : 90.70816280881312 Prediction Results Ada Boort Accuracy : 90.93562960102057 Unional Credit Carit Dataset Generate Tra						
Random Forest Acturacy Accuracy : 99. 788162369811312 Profection Results Add Boost Add Boost Add Boost Add Boost Algorithm Defect Frand From Test Data Clean & Frand Transaction Delection Graph Exit	Randon Forest Accuracy Accuracy : 99.78816286881312 Production Results Ada Boost Accuracy : 99.98562969102057 Unional Credit Card Dataset Generate Tra						
Production Results Ada Boost Aesumary : 99.93562960142057 Upload Credit Caird Dataset Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Detect Frand From Test Data Clean & Fraud Transaction Detection Graph Exit	Production Results Ada Boott Accumicy : 99.98562960142857 United Credit Cant Dataset Generate Tra						
Ada Boost Accuracy : 99.92562960142057 Upload Credit Caird Dataset Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Detect Frand From Test Data Clean & Fraud Transaction Detection Graph Exit	Ada Boott Accuracy : 99.98562960142857 United Credit Card Dataset Generate Tra						
Upload Credit Card Dataset Generate Train & Test Model Run Random Forest Algorithm Run Ada Boost Algorithm Detect Frand From Test Data Clean & Frand Transaction Detection Graph Exit	Uniond Credit Card Dataset Generate Tra						
Detect Frand From Test Data Clean & Frand Transaction Detection Graph Exit	a manufacture and a second second	in & Test Model	Rus Rando	m Forest Algorithm	Run Ada Boost Algorithm		
	Detect Frand From Test Data Clean & Fran	d Transaction Dete	cetion Graph	Exit			

Screenshot 5.5 Run AdaBoost

5.6 Detection of Fraud

Click on 'Detect Fraud From Test Data' button to upload test data and to predict whether test data contains normal or fraud transaction.

The below figure decribes the clean Signatures.

dit Ged Fault Graciller				- D 3
	Credit Card Fraud Detect	ian Using Random Paryst Free R	about Chaushfler	
Colliners A. And Kamar One Drive Denkin X_{-1} (a) 33980715 0.07371017 2.53 0.46238778 0.2395855 0.036878 0.36 -0.61730988 0.90133988 0.03119378 1.4 0.02579058 0.403980296 0.05111937 1.06 0.06602507 0.1255395 0.0561507 0.06 0.05602507 0.1255395 0.0561507 0.06 0.05525605 0.07580298 0.0561508 0.0 1.65525531 0.43949550 0.1437723 0.6 0.15536127 0.145739024 0.00965514 0.0 0.15536127 0.14573904 0.00965514 0.0 0.15536127 0.14573904 0.00965514 0.0 0.15536127 0.14573904 0.0259455 0.00 X_{-1} (1) 0.35535406 0.24016307 1.77 1.50649938 0.79146096 0.2475757 0.5 0.06605569 0.7146196 0.2475757 0.5 0.12139391 2.2601577 0.55407973 0.5 0.12139391 2.2601577 0.55407973 0.5 0.068029996 0.22754183 0.1399657 0.5 0.68929996 0.22754183 0.1399657 0.5 0.68929996 0.22754183 0.1399657 0.5 0.68929996 0.22754183 0.13952901 1.79	pProject Code Epitased Epitased Credit Care EMeria 1, 37515522, 4, 338326077 (375697, 0, 099794)7, 4, 55158953 (8817987, -4, 47046053, 0, 20727)124 (890678, 0, 27783758, 0, 11647591 3355638, 40, 2165905], Predicted = Transactis (355618, 40, 2165905], Predicted = Transactis (355018, 0, 44415408, 0, 06001765 (3542513, -0, 16697944), 1, 61, 272866 (355509, 0, 46, 391704, 0, 11480465 (2597959, 0, 46, 391704, 0, 11480465 (2597959, 0, 46, 391704, 0, 11480465 (259795, 0, 47, 597959, 4, 0, 01, 158052 (39931), 0, 0, 1472417], Predicted = Transactis (269514, 0, 37797959, 4, 0, 01, 15815 (359515, 0, 7771679, 4, 0, 90941226 (5555279, -0, 45975134), Predicted = Transacti (399514, 0, 36739178, 0, 00941226	Silataneticrodiscard.cor teat file loaded on Contains Cleaned Signatures n Contains Cleaned Signatures		
			-	
Upload Credit Card Dataset	Generate Train & Test Model	Run Random Forest Algorithm	Run Ada Boost Algorithm	
Detect Frand From Test Data	Clean & Fraud Transaction Deter	ction Graph Exit		

Screenshot 5.6 Detection of Clean Signatures

The below figure decribes the Fraud Signatures.

ORIGANIA DENIA				- a ×
	Croff Card Frand Detect	ion Using Random Forest Tree Bo	sed Classifier	
X+ 4.08000000+42-4.3.1222054+60-13 3.8778959-00-5.2215786-41-1.425 1.9918725+00-2.2215786-41-1.425 1.9918725+00-2.57129371-40-2.772 2.59990736-40-3.59521581-01-4.250 1.1474715+40-2.38005567+40-1.4250 1.3991959-01-3.1732371-40-3.544 3.00195199-01-4.45151675-42-1.7788 4.43275572-40, Predeted = Contain F X+ 4.980000000-92-3.230222554+00-1.425 1.3918725-40-2.370222554+00-1.425 1.3918725-40-2.3702555-40-1.4259 1.3918725-40-2.3702555-40-1.4259 1.3918725-40-2.3702555-40-1.4259 1.3918725-40-2.3702555-40-1.4259 1.44747[8-400-2.8005557+40-1.4259 1.24919599-01-2.8005557+40-1.5948 3.20199199-01-4.45191675-42-1.7788 3.45275572+40], Predeted = Contains F X+ 3.91000000-42-8.29032199-01-4.453	PSERS201a=00-1.88552073a=00 PSERS201a=00-2.5775573a=00 PSERS200-2.57754-00 PSERS200-2.5774120a=01 PSERS200-2.46521076a=01 PSERS201-46521076a=01 PSERS201-460-4.88552073a=00 PSERS200-2.5775731a=00 PSERS200-2.5775731a=00 PSERS200-2.5775731a=00 PSERS200-2.5775757a=01 PSERS200-2.54521076a=01 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200-2.5452100 PSERS200000000000000000000			
Upload Credit Card Dataset	Generate Train & Test Model	Run Random Forest Algorithm	Run Ada Boost Algorithm	
Detect Fraud From Test Data	Clean & Frand Transaction Dete	etton Graph Exti		
IX R C C O C R P			30°C. Mostly r	

Screenshot 5.7 Detection of Fraud Signatures

5.8 Detection Graph

Click on 'Clean & Fraud Transaction Detection Graph' button to see the total test transaction of clean and fraud signatures in graphical format. The below X-Y graph represents the count of clean and fraud transactions.

Screenshot 5.8 Detection graph

6.TESTING

6.TESTING

6.1 INTRODUCTION TO TESTING

The purpose of testing is to discover errors. Testing is the process of trying to discover every conceivable fault or weakness in a work product. It provides a way to check the functionality of components, sub assemblies, assemblies and/or a finished product It is the process of exercising software with the intent of ensuring that the Software system meets its requirements and user expectations and does not fail in an unacceptable manner. There are various types of test. Each test type addresses a specific testing requirement.

6.2 TYPES OF TESTING

6.2.1 SYSTEM TESTING

Testing has become an integral part of any system or project especially in the field of information technology. The importance of testing is a method of justifying, if one is ready to move further, be it to be check if one is capable to with stand the rigors of a particular situation cannot be underplayed and that is why testing before development is so critical. When the software is developed before it is given to user to user the software must be tested whether it is solving the purpose for which it is developed. This testing involves various types through which one can ensure the software is reliable. The program was tested logically and pattern of execution of the program for a set of data are repeated. Thus the code was exhaustively checked for all possible correct data and the outcomes were also checked.

6.2.2 UNIT TESTING

Unit testing entails creating test cases to ensure that the program's internal logic is working properly and that programme inputs result in valid outputs.Validation should be performed on all decision branches and internal code flow. It is the testing of the application's individual software units. Before integration, it is done after each individual unit is completed. Unit tests guarantee that each individual path of a business process follows the published specifications and has clearly defined inputs and outputs.

6.2.3 INTEGRATION TESTING

Integration tests are designed to test integrated software components to determine if they actually run as one program. Testing is event driven and is more concerned with the basic outcome of screens or fields. Integration tests demonstrate that although the components were individually satisfaction, as shown by successfully unit testing, the combination of components is correct and consistent. Integration testing is specifically aimed at exposing the problems that arise from the combination of components.

6.2.4 ACCEPTANCE TESTING

When that user find no major problems with its accuracy, the system passes through a final acceptance test. This test confirms that the system needs the original goals, objectives and requirements established during analysis without actual execution which eliminates wastage of time and money acceptance tests on the shoulders of users and management, it is finally acceptable and ready for the operation.

6.3 TEST CASES

Test Case	Test Case Name	Description	Sample Input	Expected Output	Actual Output	Remarks
01	Upload Dataset	Credit Card dataset is added	Adding dataset to the application by user	Dataset loaded	Result shows is credit card.csv loaded	Pass
02	Train and test model	Click on train & test model to know the whole training size& test size	Uploaded dataset	Train & test model generated	Train & test model generated	Pass
03	Applying RFA & Adaboost Classifier	These classifiers are used to detect the fraud	Combined classifier used on dataset collected from credit card users	High accuracy	High accuracy	Pass
04	Detection of fraud	Detects the fraud	Detects the fraud & clean data from collected test data	Transaction clean & fraud	Result shows that transaction contain clean & fraud signatures	Pass
05	System Testing in various versions of OS	OS compatibility	Execute the program in windows XP\ Windows 7 or above	Performance is better in windows 7	Performance is better in windows 7	Pass

7.CONCLUSION

CMRTC

7.CONCLUSION & FUTURE ENHANCEMENT

7.1 PROJECT CONCLUSION

With more training data, the Random forest algorithm will perform better, but the application's pace will slow down during testing. More pre-processing procedures would also be beneficial. Individual (standard) models and hybrid models using AdaBoost and majority voting combination methods were evaluated using a publicly available credit card data set.

7.2 FUTURE ENHANCEMENT

In Future, privacy preserving techniques can be applied in distributed environment which will resolve the security related issues preventing private data access.

8.BIBLIOGRAPHY

8.BIBLIOGRAPHY

8.1 REFERENCES

1. W. Yu and N. Wang, "Research on Credit Card Fraud Detection Model Based on Distance Sum," 2009 International Joint Conference on Artificial Intelligence, Hainan Island, 2009, pp. 353-356.

2. Vijayshree B. Nipane, Poonam S. Kalinge, Dipali Vidhate, Kunal War, Bhagyashree P. Deshpande, Fraudulent Detection in Credit Card System Using SVM & Decision Tree.

3. Sitaram patel, Sunita Gond, Supervised Machine (SVM) Learning for Credit Card Fraud Detection.

4. Y. Sahin and E. Duman, Detecting Credit Card Fraud by Decision Trees and Support Vector Machines.

5. Snehal Patil, Harshada Somavanshi, Jyoti Gaikwad, Amruta Deshmane, Rinku Badgujar, Credit Card Fraud Detection Using Decision Tree Induction Algorithm.

6. E. Aleskerov, B. Freisleben, and B. Rao, "CARDWATCH: A neural network based database mining system for credit card fraud detection," in Proc. IEEE/IAFE Computat. Intell. Financial Eng., Mar. 1997, pp. 220–226.

7. C. Alippi, G. Boracchi, and M. Roveri, "A just-in-time adaptive classification system based on the intersection of confidence intervals rule," Neural Netw., vol. 24, no. 8, pp. 791–800, 2011.

8. C. Alippi, G. Boracchi, and M. Roveri, "Hierarchical change-detection tests," IEEE Trans. Neural Netw. Learn. Syst., vol. 28, no. 2, pp. 246–258, Feb. 2016.

9. C. Alippi, G. Boracchi, and M. Roveri, "Just-in-time classifiers for recurrent concepts," IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 4, pp. 620–634, Apr. 2013.

10. B. Baesens, V. Van Vlasselaer, and W. Verbeke, Fraud Analytics Using Descriptive, Predictive, and Social Network Techniques: A Guide to Data Science for Fraud Detection. Hoboken, NJ, USA: Wiley, 2015.

11. A. O. Adewumi and A. A. Akinyelu, "A survey of machinelearning and nature-inspired based credit card fraud detection techniques," International Journal of System Assurance Engineering and Management, vol. 8, pp. 937–953, 2017.

12.A. Srivastava, A. Kundu, S. Sural, A. Majumdar, "Credit card fraud detection using hidden Markov model," IEEE Transactions on Dependable and Secure Computing, vol. 5, no. 1, pp. 37–48, 2008

13. S. Bhattacharyya, S. Jha, K. Tharakunnel, and J. C., "Data mining for credit card fraud: A comparative study," Decision Support Systems, vol. 50, no. 3, pp. 602–613, 2011. [7] N. S. Halvaiee and M. K. Akbari, "A novel model for credit card fraud detection using Artificial Immune Systems," Applied Soft Computing, vol. 24, pp. 40–49, 2014

14. E. Kirkos, C. Spathis, and Y. Manolopoulos, "Data mining techniques for the detection of fraudulent financial statements," Expert Systems with Applications, vol. 32, no. 4, pp. 995–1003, 2007

15. C. Phua, K. Smith-Miles, V. Lee, and R. Gayler, "Resilient identity crime detection," IEEE Transactions on Knowledge and Data Engineering, vol. 24, no. 3, pp. 533–546, 2012.

8.2 WEBSITES

- 1. https://ieeexplore.ieee.org/document/8292883
- 2. https://www.ijert.org/research
- 3. https://researchbank.swinburne.edu.au

8.3 GITHUB LINK

<u>https://github.com/Bindhu1204/Creditcard-Frauddetection</u>